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ABSTRACT

With the rapid advancement of technology, monitoring forest cover changes has become increasingly quantifiable
through various techniques and methods. In this study, we developed a procedure that utilizes the Deep Neuron
Network (DNN) model and the Geographic Information Systems (GIS) based on high-resolution imagery captured at
different time points to create forest cover change maps in Nui Luot, Chuong My, Hanoi. Two RGB (Red-Green-
Blue) spectral images were captured by Unmanned Aerial Vehicle (UAV) at two different time points (pre-scene and
post-scene) and used to extract information for the DNN model to produce land cover maps for these two time points.
The land cover classification was divided into four classes: (1) Trees, (2) Vacant, (3) Built area and others, and
(4) Water surface. Combined with GIS analysis, the forest cover change maps were developed to quantify detailed
increases or losses in forest cover based on the "Trees" class. The model's accuracy was evaluated using parameters
such as the area Under the ROC Curve (AUC), Accuracy (ACC), Precision, Recall, F1-Score, Kappa, and Root Mean
Square Error (RMSE). The analysis results indicate that from January 31, 2023, to October 20, 2023, the forest cover
in the study area decreased by 0.53%. The accuracy metrics for the pre-change scene were: average AUC = 0.922,
ACC = 76.86%, average Precision = 0.743, average Recall = 0.73, average F1-Score = 0.723, Kappa = 0.692, and
RMSE = 0.297. For the post-change scene, the accuracy metrics were: average AUC = 0.954, ACC = 81.89%,
average Precision = 0.823, average Recall = 0.815, average F1-Score = 0.818, Kappa = 0.758, and RMSE = 0.262. A
deforestation scenario was constructed to evaluate the effectiveness of the DNN models in assessing and monitoring
forest dynamics.
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1. Introduction al., 2021; UN, 2024; Weisse, Goldman and
Carter, 2024). According to statistics, in 2023

On a global scale, forest cover is
alone, 3.75 million hectares of primary forest

continuing to decline due to the impacts of

climate change and human activities (Diez et Were lost (Weisse, Goldman and Carter,
2024). Among the areas most severely

*Corresponding author, Email: tphong1617@gmail.com affected are the tropical forests of the Amazon
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(Brazil), the Democratic Republic of the
Congo (DRC), and Indonesia (Weisse,
Goldman and Carter, 2024), with Vietnam
also being one of the countries impacted by
the gradual loss of forest cover (Cochard et
al., 2016). One of the solutions to manage and
mitigate deforestation is the application of
technologies in forest monitoring (Henry et
al., 2015). Remote sensing tools, satellite
imagery, Unmanned Aerial Vehicle (UAV)
imagery, and artificial intelligence (Al) are
being widely utilized for real-time monitoring
of forest dynamics, facilitating early detection
of illegal logging activities (Buchelt et al.,
2024; Dainelli et al., 2021; Ecke et al., 2022;
Giang Linh, Dang Kinh and Bui Thanh, 2023;
Guimardes et al., 2020; Liu et al.,, 2021;
Pham-Duc, Tran Anh and Tong Si, 2023;
Tran Xuan et al., 2023). Forest change maps
serve as valuable tools in forest monitoring
technology to track and analyze changes in
forest area and quality over time (Hansen and
Loveland, 2012; Kim et al., 2014). These
maps are typically used for (1) Monitoring
forest recovery by providing
information on deforestation due to logging,
agriculture, or other causes, as well as the
recovery of areas that have been devastated
(Camarretta et al., 2020). (2) Assessing the
impacts of climate change to understand better
how climate change affects forest ecosystems,
including changes in species distribution and
forest structure (Yang et al., 2019).
(3) Management and conservation to assist
forest managers in planning conservation
efforts and sustainable management strategies
while also identifying areas that require
priority protection (Camarretta et al., 2020;
Yang et al., 2019). (4) Ecological research by
providing data for studies on biodiversity, soil
nutrition, and other ecological factors (Hill et
al., 2019; Marin et al., 2021).

loss and
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Al, particularly machine learning and deep
learning methods, has opened up new
potentials in classifying and predicting
changes in forest cover (Diez et al., 2021;
Janga et al., 2023; Khan et al., 2017; Khelifi
and Mignotte, 2020; Ortega et al., 2019). Al
algorithms can learn from historical data and
make more accurate predictions about forest
cover changes based on various input factors
such as remote sensing data, topography,
climate, and human activities (Diez et al.,
2021; Isaienkov et al., 2021; Janga et al.,
2023; Khelifi and Mignotte, 2020; LeCun,
Bengio and Hinton, 2015). The application of
Al, remote sensing, and GIS in forest cover
mapping not only aids in monitoring changes
over time but also plays a crucial role in
providing early warnings about deforestation
(Annus et al., 2021; Watanabe et al., 2021),
environmental degradation, and supports
policymakers in sustainable forest resource
management (Haq et al., 2024; Lechner,
Foody and Boyd, 2020). These advanced
technologies have contributed to global efforts
in forest protection, biodiversity conservation,
and mitigating the impacts of climate change
(Hagq et al., 2024; Janga et al., 2023).

In recent years, research on forest cover
changes using imagery from UAV combined
with advanced Al tools has become a
prominent trend in the fields of remote
sensing and environmental monitoring (Diez
et al., 2021; Ecke et al., 2022; Mohan et al.,
2021). UAV provide high-resolution spatial
data and flexibility, allowing detailed
information to be collected in hard-to-reach
areas (Chenyan et al., 2024; Diez et al., 2021;
Ecke et al., 2022; Grubesic, Nelson and Wei,
2024; Guimardes et al., 2020; Mohan et al.,
2021). UAV equipped with optical cameras,
particularly RGB spectral channels, are
widely used due to their cost-effectiveness
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and simple data structure (Bourgoin et al.,
2020; Diez et al.,, 2021; Li et al.,, 2020;
Schiefer et al., 2020). Successful applications
of deep learning combined with UAV RGB
imagery analysis in forest change studies
include research by Onishi and Ise (2021),
who utilized Convolutional Neural Networks
(CNN) to successfully classify seven tree
classes with over 90% accuracy at the
Kamigamo Experimental Station of Kyoto
University (Onishi and Ise, 2021). A similar
study employing CNN to analyze high-
resolution UAV RGB imagery (Schiefer et al.,
2020) accurately mapped nine tree species,
three genus-level classes, dead wood, and
forest floor with an F1-score accuracy of 0.73
in temperate forest areas of the Southern
Black Forest and Hainich National Park in
Germany (Schiefer et al., 2020). Xie et al.
(2024) used the Mask R-CNN model to create
high-accuracy forest maps based on high-
resolution UAV RGB images in Jiangle
County, Fujian Province, China (Xie et al.,
2024). These examples demonstrate the
significant potential of applying deep learning
models combined with high-resolution UAV
RGB imagery analysis for forest cover change
identification and mapping.

The DNN serves as a foundational model
for deep learning techniques, offering several
advantages such as (1) the ability to learn
complex features: DNN have multiple hidden
layers, allowing them to learn intricate and
nonlinear features from data (Aldahdooh et
al., 2022; Hussain, Tamizharasan and Rahul,
2022). This makes them suitable for tasks
such as image recognition, speech
recognition, and natural language processing
(Hussain, Tamizharasan, and Rahul, 2022);
(2) automatic feature extraction: One of the
most significant advantages of DNN is their
ability to automatically extract essential

features from raw data without human
intervention, minimizing reliance on manual
feature selection techniques (Du et al., 2018);
(3) high performance with large datasets:
DNN often outperforms traditional methods
when large amounts of data are available for
training (Faker and Dogdu, 2019; Rithani,
Kumar and Doss, 2023). It can leverage
information from large datasets to enhance the
accuracy and generalization capabilities of the
model (Faker and Dogdu, 2019; Rithani,
Kumar and Doss, 2023); and (4) scalability:
DNN are flexible and can scale with various
data types, from structured data to
unstructured data such as images, audio, and
text (Aldahdooh et al., 2022; Du et al., 2018;
Hussain, Tamizharasan and Rahul, 2022).
With the advantages of DNN models and
high-resolution UAV RGB imagery outlined
above, this study presents a procedure for
applying a DNN model based on high-
resolution UAV RGB image analysis and GIS
techniques to create forest cover change maps
over two different periods. The experimental
study area is the Luot Mountain area in
Chuong My, Hanoi, with forest cover
dynamics analyzed using two optical RGB
images captured at different times (pre-scene:
January 1, 2023, and post-scene: October 20,
2023). land

classification maps were created with four

Accordingly, two cover
classes (Trees, vacant, built area, and others,
as well as water surface). The 'Trees' class
was extracted using GIS analysis to develop
the forest cover change map for the study
area. The results of this research contribute to
assisting managers in the planning and
rational use of forest land and demonstrate the
high-accuracy

potential applications for

forestry research.
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2. Research area

The study area is part of Luot Mountain,
covering an area of 209.3 hectares, located in
the center of Xuan Mai Town, 38 km from the
center of Hanoi, and 45 km from Hoa Binh
Town (Fig. 1). Luot Mountain features
relatively uniform terrain characterized by
low hills, with minimal fragmentation,
comprising two contiguous hills extending
approximately 2 km from east to west. One
peak has an absolute height of 133 m, while
the other reaches 76 m, with an average slope
of 15 degrees and a maximum slope of 27
degrees. The primary aspects are northeast,
The

conditions are favorable for afforestation.

northwest, and southeast. terrain
Several indigenous tree species, such as
Diospyros spp, Hopea odorata, and Dalbergia
tonkinensis, have been planted in this area.
The soil in the Luot Mountain area is yellow-
brown Feralit soil developed on the parent
rock of Porphyry belonging to the neutral
magma rock group, with thickness varying
from thick to medium depending on the
specific topographical location.

Climate: Luot Mountain is situated within
the humid tropical monsoon climate zone,
characterized by two distinct seasons: the
rainy season from April to October and the
dry season from November to March of the
following year.

- Temperature Regime: The average
annual temperature is 23.2°C, with the highest
average monthly temperatures in July and
August reaching 28.5°C and the lowest
average in January at 16.5°C. The hot season
sees temperatures exceeding 25°C from May
to mid-September, while the cold season has
average temperatures below 20°C from
December to March of the following year.
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The remaining months have
temperatures ranging from 20 to 25°C.

- Precipitation Regime: The total annual
rainfall is 1753 mm, with an average monthly
rainfall of 146 mm. Rainfall is unevenly
distributed throughout the year, with the
highest average monthly rainfall occurring in
July and August at 312 mm and the lowest in
January at 15 mm.

- Humidity: The average relative humidity

average

is relatively high at 84% but varies
significantly between months.
- Evaporation: The average annual

evaporation is 602 mm, with the highest in
May (78.5 mm) and the lowest in February
(47.6 mm).

- Wind Regime: The area is influenced by
two main wind directions:

o The Southeast monsoon blows from
April to October.

o The Northeast monsoon blew from
November to March of the following year.

The area is traversed by two rivers,
surrounded by the Bui and Tich rivers, with a
total river and stream area of 29.43 hectares.
Additionally, there are water reservoirs and
dam systems, such as Vai Bon Lake and the
Tran Dam.

Flora Resources: The experimental forest
at Luot Mountain has recorded 342 species of
vascular plants belonging to 257 genera and
90 families. The vegetation in the area is
diverse in life forms and values, comprising 9
life forms and 7 value groups.

Fauna Resources: The area has recorded
156 species of vertebrates from 20 orders, 60
families, and 104 genera, including 21 rare
species. Furthermore, 409 insect species have
been identified from 87 families and 13
orders, with the order Lepidoptera accounting
for 208 species, 135 genera, 30 families, 10
classes, and 4 species.
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Figure 1. Study area in a part of Luot mountain, Chuong My, Hanoi

3. Methodology and data used
3.1. Methodology

The research methods and techniques
employed are illustrated in an 8-step process
(Fig. 2). The sequence of steps is as follows:

Step 1: Select the study area at Luot
Mountain (Fig. 1).

Step 2: Collect the database: Gather UAV
imagery with RGB spectral channels at two
different time points (Fig. 2). Details about
the collected data are presented in the data
section.

Step 3: Sample data for the model:
Samples are determined based on location
through analysis of the imagery and verified
through fieldwork. Thus, the input data for the
model includes 3 RGB bands. The label data
comprises 4 classes: (1) Trees, (2) Vacant,
(3) Built area and others, and (4) Water
surface. These sample data are organized into
two approaches: Option 1 separates training
and validation datasets for each imagery

scene. Option 2 combines the training data of
the pre-scene and post-scene into a single
training dataset while maintaining the
validation datasets for each imagery scene.

Step 4: Model implementation using a
DNN  model applied through the
WekaDeeplearning4j tool in Weka software
version 3.8.6 (Lang et al., 2019). This tool
features an intuitive and user-friendly
graphical user interface (GUI) that is easy to
use.

Step 5: Evaluate the model results using
assessment  parameters for  multi-class
classification problems, such as ROC, AUC-
ROC, Accuracy, Precision, F1-Score, Recall,
Kappa, and RMSE.

Step 6: Select the optimal option based on
the model evaluation results from Step 5. In
this study, Option 1 was chosen to facilitate
the creation of the land cover map. An
additional scenario to verify the model's
accuracy assumes areas of lost forest cover in
the post-scene imagery (Fig. 3). Accordingly,
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these areas in the post-scene are color-coded
in gray, and a land cover map based on this
scenario is established.

Step 7: Create the land cover map based on
the DNN model from the pre- and post-scene.
A land cover map verifies the model after

1. CHOOSING STUDY AREA

classification is created according to the
deforestation scenario.

Step 8: Use GIS technology to analyze and
develop a forest cover change map. The tool

utilized is ArcMap 10.8 [ESRI Inc].

/

OPTION 1
Training set 1 (70%): from pre-scene

| 2. DATA COLLECTION |—|_' o

) |

PRE-SCENE
Taken date: 31/01/2023
UAV: Mavic 3
Photogrammetry: PIX4D
Bands: 3 (Red, Blue, Green)

Factors:
Band 1: Red
Band 2: Green
Band 3: Blue

set 1 (30%): from post-scene
Training set 2 (70%): from pre-scene
Validation set 2 (30%): from post-scene

/[

OPTION 2

Combine training set 1 vs set 2
Validation set 1
Validation set 2

Labels:
1- Trees
2-Vacant

3- Built area, and others

4- Water surface

POST-SCENE
Taken date: 20/10/2023
UAV: Wingtra One GEN II
Photogrammetry: PIX4D
Bands: 3 (Red, Blue, Green)

/ Land cover from pre-scene /

/ Land cover from post-scene /

ROC, AUC-ROC
ACC, Precision,
F1-Score, Recall
Kappa,RMSE

6. CHOOSE THE BEST OPTION
Option 1

Overlay by GIS analysis

Model evaluation based on
forest cover loss scenarios

Figure 2. Flow chart processing in this study
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Figure 3. Delineation of areas for the hypothetical deforestation scenario: (a) post-scene,
(b) the scene after revision according to the deforestation script of the post-scene
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3.1.1. Generating photogrammetry imagery
from UAV images

The basic steps to create maps from UAV
imagery include:

(1) Data Collection: Fly the UAV over the
area of interest and collect aerial images with
an inevitable overlap between them.

(2) Data Preprocessing: Perform basic
edits on the images, such as color balancing,
noise reduction, and brightness adjustment.

(3) Image Stitching: Use PIX4D software
to stitch the images into a sizeable ortho
mosaic image (Caputo et al., 2023). The
software employs algorithms to identify
common points between the images and
merge them (Caputo et al., 2023).

(4)  Georeferencing:  Assign  spatial
coordinates to the stitched image to create a
map that can be utilized in GIS.

3.1.2. Deep Neuron Network model

DNN is characterized by a structure that
includes multiple layers, particularly hidden
ones (Liu et al, 2017; Shrestha and
Mahmood, 2019). These networks are widely

weight

RED
(band 1)

GREEN -/
(band 2)

BLUE /

(band 3)

INPUT LAYER

used in Al and machine learning to model
complex relationships in data (Liu et al,
2017). The operation of DNN relies on
neurons and their connections (LeCun,
Bengio, and Hinton, 2015). Each neuron in a
layer receives input from the neurons of the
previous layer, computes the output, and
transmits the result to the next layer (Shrestha
and Mahmood, 2019). The network learns to
adjust weights through a training process
using the backpropagation algorithm and
optimizes them using algorithms like gradient
descent (Shrestha and Mahmood, 2019). DNN
is notable for its ability to automatically learn
features from complex and nonlinear data,
which traditional models struggle to handle
(Samek et al., 2017). DNN form the
foundation of deep learning algorithms,
enabling them to tackle various tasks ranging
from computer vision to natural language
processing (Liu et al, 2017). Figure 4
illustrates how the DNN model classifies land

cover from UAV RGB images. Table 1
presents the hyperparameters of the DNN
model used in this study.

Vacant
(shrub)

A '?D Built area

OUTPUT LAYER

49 Water

HIDDEN LAYERS

Figure 4. llustration of the multilayer neural network of Deep Learning for classifying forest cover from
high-resolution UAV imagery in the Luot Mountain area
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Table 1. The hyperparameters of the DNN model

Hyperparameters Feature/Value

Layer specification
Input layer 3 node
INumber of hidden layers 6
INumber of nodes in hidden layers| 29
Output layer 4 node
Connection full
IActivation Softmax
ILoss function MCXENT

Number of epochs 10

Batch size 100

Network configuration
Optimization algorithm

Stochastic gradient descent

(Updater Adam
Bias Updater Sgd
ILearning rate 0.001
(Weight initialization method XAVIER
Bias initialization 0.0

Basic Structure of DNN

Input Layer: Receives input data and
passes it to the hidden layers. Each neuron in
the input layer corresponds to a feature of the
data.

- Hidden Layers: These layers lie between
the input and output layers, where complex
computations occur. Each hidden layer
consists of multiple neurons, allowing the
network to learn more abstract and complex
features.

- Output Layer: Provides the network's
final results. Depending on the type of
problem, the output layer may represent
probabilities for classification classes or
continuous values for regression tasks.

Activation Functions

Activation  functions are crucial
components in DNN that help the network
learn the nonlinear characteristics of the data:

- ReLU (Rectified Linear Unit):
Commonly used in hidden layers, the formula
ReLU facilitates faster learning and mitigates
the vanishing gradient problem.

- Sigmoid: Maps input values to a range
between 0 and 1, typically used for binary
classification.

- Tanh: Converts input values to a range
between -1 and 1, enabling faster and more
stable learning than Sigmoid.
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- Softmax: Converts outputs into
probabilities for multi-class classification.
Training Process

- Forward Propagation: The process of
passing data through the network's layers to
compute the output.

- Loss Function: Measures the difference
between the network's predictions and the
actual values. For example, MSE (Mean
Squared Error) is used for regression, and
Cross-Entropy is used for classification.

- Backpropagation: Computes the gradient
of the loss function to the network's weights
and updates the weights using optimization
algorithms.

Optimization Algorithms

- Gradient Descent: Adjusts weights in the
direction of the negative gradient of the loss
function to minimize loss.

- Adam (Adaptive Moment Estimation): A
more efficient optimization algorithm that
adjusts the learning rate based on the first and
second moments of the gradient.

Regularization

Techniques to prevent overfitting and
improve the network's generalization ability:

- Dropout: Randomly removes some
neurons during training to prevent the network
from relying too heavily on certain neurons.

- L2 Regularization: Adds a penalty to the
loss function based on the sum of the squares
of the weights, helping to reduce model
complexity.

3.1.3. Methods for evaluating model accuracy

To evaluate the accuracy of the DNN
model in the land cover classification task, the
evaluation metrics used in this study include
the Confusion Matrix, Area Under the Curve
(AUC),  Accuracy, Precision, Recall,
F1-Score, Kappa, and RMSE (Maxwell et al.,
2017; Rodriguez-Galiano and Chica-Rivas,
2014).

Confusion Matrix
The Confusion Matrix is a machine
learning tool used to assess a classification
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model's performance. This matrix displays the
number of predictions made by the model for
each class, allowing for a comparison between
the predictions and the actual values (Marom,
Rokach, and Shmilovici, 2010). The structure
of a 4-class confusion matrix C for the land
cover classification problem in this study is as
follows:

Cll ClZ C13 C14
C C C C

c= |21 Caz G2z Lag 1
Cor Csp Css Cog M
C4~1 C4~2 C43 C44

where: C;; (véii=1, 2, 3, 4) is the number of
correct predictions for each corresponding
class (Vacant; Water; Built area and others;
Trees). Cj; (i #j) is the number of incorrect
predictions, meaning samples belonging to
class i but incorrectly predicted as class j.

Accuracy (ACC)

The accuracy parameter is a commonly
used measure to evaluate the performance of
classification models in machine learning and
artificial intelligence. It measures the ratio of
correct predictions to the total number of
predictions. Accuracy indicates the percentage
of data samples the model can correctly
classify (Rodriguez-Galiano and Chica-Rivas,
2014). The formula for calculating accuracy is
as follows:

i Cii

z:Ii}=1 z:}%=1 Cij (2)
where: Y'7_, C;; is the total number of correct
predictions for all classes (which is the sum of
the elements on the main diagonal of the
confusion matrix). 2?212321 Cij is the total
number of data samples (which is the sum of
all elements in the confusion matrix).

Precision

Precision measures the ratio of true
positive predictions to all positive predictions.
It is primarily used when we are interested in
positive results and want to minimize false
positive predictions (Maxwell et al., 2017).
The precision for class i is calculated using
the formula:

Accuracy =

Cii
Cii+ Xj=i Cji )
where: The numerator C;; represents the total
number of predictions for class i (both correct
and incorrect). The denominator is the sum of
C;; and all values Cj;, which accounts for false

Precision; =

positive predictions from other classes
incorrectly predicted as class i.
Recall

Recall measures the ratio of actual positive
samples that are correctly predicted. It is
crucial when we want to minimize cases of
missed detections (False Negatives) (Maxwell
et al., 2017). The recall for class iii is
calculated using the formula:

Cii
Ciit+ X j#i Cij )
where: The numerator C; represents the
number of correct predictions for class i. The
denominator is the sum of C;; and all values
Cij, which accounts for false negative
predictions from other classes incorrectly
predicted as another class.

Fl1-Score

Fl-score is the harmonic mean between
precision and recall, helping to balance the two
measures. The Fl-score is particularly useful in
cases of imbalanced data (Draszawka and
Szymanski, 2023). The formula for calculating

the F1-score for class i is:
Precision; x Recall; (5)

Recall; =

F1—score; = 2x —
Precision;+ Recall;

Area Under Curve (AUC)

AUC is a common metric for evaluating
the performance of classification models,
typically used for binary classification tasks.
For multi-class classification problems, AUC
is extended by calculating the AUC for each
class and then aggregating these values (Wu
and Zhou, 2017). In this context, the multi-
class classification problem is transformed
into several binary classification problems.
Specifically, for each class, you compare that
class against all other classes combined into a
single class (Wu and Zhou, 2017). The AUC
for each class is then calculated similarly to
the binary case. The closer the AUC value is
to 1, the more accurate the model.
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Steps to calculate AUC for each class:

- Select a class i, then label this class as
positive (Positive) and the remaining classes
as negative (Negative).

- Calculate the true positive rate (TPR) and
false positive rate (FPR) for each class i.

The formula for calculating AUC for each

class is as follows:
AUC; = Tpt TR TR (FPR,,,, — FPR,) (6)
where: TPR is the true positive rate (recall);
FPR is the false positive rate. nnn is the total
number of samples in class i.

The mean AUC value across classes is
calculated by summing the AUCs for each
class and dividing by the number of classes.

Kappa

Kappa measures the accuracy of the model
while accounting for random factors. It
assesses the agreement between the model's
predictions and the actual labels, adjusting for
any random outcomes that may occur (de la
Torre, Puig and Valls, 2018). The formula for

Kappa is:

Do~ Pe
T (7

Where p, is the proportion of correct
predictions made by the model, and p, is the
expected proportion of correct predictions due
to chance, calculated by taking the product of
the total number of correct predictions and the
total number of actual predictions for each
class.

Kappa =

105°34'E 105°35'E

Root Mean Square Error (RMSE)

RMSE measures the deviation between
predicted and actual values, which is
commonly used in regression problems. It
represents the model's error level, with a
smaller RMSE indicating better model
performance (Wei and James, 2013). The
formula for RMSE is:

1 ~
RMSE = J; i=1(vi = 9)? ()

where y; is the actual value of the i-th sample,
y, is the predicted value of the i-th sample,
and 7 is the total number of data samples.

3.2. Data used
3.2.1. High-solution UAV images

The primary database in this study consists
of two photogrammetry image scenes (Fig. 5),
captured at two different time points (pre-
scene: captured on January 31, 2023 (Fig. 5a)
and post-scene: captured on October 20, 2023
(Fig. 5b)). The data for pre-scene was
processed using images taken from a Mavic 3
drone (Fig. 6a) (Chenyan et al., 2024). Post-
scene was processed using images from a
Wingtra One GEN 1II drone (Fig. 6b)
(Grubesic, Nelson, and Wei, 2024). The
specifications of the two drones are presented
in Table 2. Both scenes were processed to
achieve an ordinary spatial resolution of
0.1266 m/pixel, with each image comprising
three RGB spectral bands.

105°34'E 105°35'E

20°55'N

20°54'N

0.25 0.5
—
Kilometers

20°55'N

20°54'N

20°55'N

20°54'N

Kilometers

105°34'E 105°35'E

105°34°E 105°35°E

Figure 5. The photogrammetry scenes in the study area: (a) pre-scene, (b) post-scene
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